Effect of Leader Placement on Robotic Swarm Control.

AAMAS(2017)

引用 12|浏览26
暂无评分
摘要
Human control of a robotic swarm entails selecting a few influential leaders who can steer the collective efficiently and robustly. However, a clear measure of influence with respect to leader position is not adequately studied. Studies with animal systems have shown that leaders who exert strong couplings may be located in front, where they provide energy benefits, or in the middle, where they can be seen by a larger section of the group. In this paper, we systematically vary number of leaders and leader positions in simulated robotic swarms of two different sizes, and assess their effect on steering effectiveness and energy expenditure. In particular, we analyze the effect of placing leaders in the front, middle, and periphery, on the time to converge and lateral acceleration of a swarm of robotic agents as it performs a single turn to reach the desired goal direction. Our results show that swarms with leaders in the middle and periphery take less time to converge than swarms with leaders in the front, while the lateral acceleration between the three placement strategies is not different. We also find that the time to converge towards the goal direction reduces with the increase in percentage of leaders in the swarm, although this value decays slowly beyond the percentage of leaders at 30%. As the swarm size is increased, we find that the leaders in the periphery become less effective in reducing the time to converge. Finally, closer analysis of leader placement and coverage reveals that front leaders within the swarm tend to expand their coverage and move towards the center as the maneuver is performed. Results from this study are expected to inform leader placement strategies towards more effective human swarm interaction systems.
更多
查看译文
关键词
Leader placement,Robotic swarms,Convergence,Emergent behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要