Asynchronous Task-Based Parallelization of Algebraic Multigrid

PASC(2017)

引用 4|浏览16
暂无评分
摘要
As processor clock rates become more dynamic and workloads become more adaptive, the vulnerability to global synchronization that already complicates programming for performance in today's petascale environment will be exacerbated. Algebraic multigrid (AMG), the solver of choice in many large-scale PDE-based simulations, scales well in the weak sense, with fixed problem size per node, on tightly coupled systems when loads are well balanced and core performance is reliable. However, its strong scaling to many cores within a node is challenging. Reducing synchronization and increasing concurrency are vital adaptations of AMG to hybrid architectures. Recent communication-reducing improvements to classical additive AMG by Vassilevski and Yang improve concurrency and increase communication-computation overlap, while retaining convergence properties close to those of standard multiplicative AMG, but remain bulk synchronous. We extend the Vassilevski and Yang additive AMG to asynchronous task-based parallelism using a hybrid MPI+OmpSs (from the Barcelona Supercomputer Center) within a node, along with MPI for internode communications. We implement a tiling approach to decompose the grid hierarchy into parallel units within task containers. We compare against the MPI-only BoomerAMG and the Auxiliary-space Maxwell Solver (AMS) in the hypre library for the 3D Laplacian operator and the electromagnetic diffusion, respectively. In time to solution for a full solve an MPI-OmpSs hybrid improves over an all-MPI approach in strong scaling at full core count (32 threads per single Haswell node of the Cray XC40) and maintains this per node advantage as both weak scale to thousands of cores, with MPI between nodes.
更多
查看译文
关键词
Multigrid, additive multigrid, task-based parallelism, hybrid MPI OmpSs implementation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要