PEG-based Changes to β-sheet Protein Conformational and Proteolytic Stability Depend on Conjugation Strategy and Location.

BIOCONJUGATE CHEMISTRY(2017)

引用 7|浏览5
暂无评分
摘要
The development of chemical strategies for site-specific protein modification now enables researchers to attach polyethylene glycol (PEG) to a protein drug at one or more specific locations (i.e., protein PEGylation). However, aside from avoiding enzyme active sites or protein-binding interfaces, distinguishing the optimal PEGylation site from the available alternatives has conventionally been a matter of trial and error. As part of a continuing effort to develop guidelines for identifying optimal PEGylation sites within proteins, we show here that the impact of PEGylation at various sites within the beta-sheet model protein WW depends strongly on the identity of the PEG protein linker. The PEGylation of Gln or of azidohomoalanine has a similar impact on WW conformational stability as does Asn-PEGylation, whereas the PEGylation of propargyloxyphenylalanine is substantially stabilizing at locations where Asn-PEGylation was destabilizing. Importantly, we find that at least one of these three site-specific PEGylation strategies leads to substantial PEG-based stabilization at each of the positions investigated, highlighting the importance of considering conjugation strategy as an important variable in selecting optimal PEGylation sites. We further demonstrate that using a branched PEG oligomer intensifies the impact of PEGylation on WW conformational stability and also show that PEG-based increases to conformational stability are strongly associated with corresponding increases in proteolytic stability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要