Novel Eda Or Edar Mutations Identified In Patients With X-Linked Hypohidrotic Ectodermal Dysplasia Or Non-Syndromic Tooth Agenesis

GENES(2017)

引用 27|浏览6
暂无评分
摘要
Both X-linked hypohidrotic ectodermal dysplasia (XLHED) and non-syndromic tooth agenesis (NSTA) result in symptoms of congenital tooth loss. This study investigated genetic causes in two families with XLHED and four families with NSTA. We screened for mutations of WNT10A, EDA, EDAR, EDARADD, PAX9, MSX1, AXIN2, LRP6, and WNT10B through Sanger sequencing. Whole exome sequencing was performed for the proband of NSTA Family 4. Novel mutation c.1051G>T (p.Val351Phe) and the known mutation c.467G>A (p.Arg156His) of Ectodysplasin A (EDA) were identified in families with XLHED. Novel EDA receptor (EDAR) mutation c.73C>T (p.Arg25*), known EDA mutation c.491A>C (p.Glu164Ala), and known Wnt family member 10A (WNT10A) mutations c.511C>T (p.Arg171Cys) and c.742C>T (p.Arg248*) were identified in families with NSTA. The novel EDA and EDAR mutations were predicted as being pathogenic through bioinformatics analyses and structural modeling. Two variants of WNT10A, c.374G>A (p.Arg125Lys) and c.125A>G (p.Asn42Ser), were found in patients with NSTA. The two WNT10A variants were predicted to affect the splicing of message RNA, but minigene experiments showed normal splicing of mutated minigenes. This study uncovered the genetic foundations with respect to six families with XLHED or NSTA. We identified six mutations, of which two were novel mutations of EDA and EDAR. This is the first report of a nonsense EDAR mutation leading to NSTA.
更多
查看译文
关键词
tooth agenesis, hypodontia, ectodermal dysplasia, EDA, WNT10A, EDAR, exome sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要