Generating laser-pulse enantiomers.

OPTICS EXPRESS(2017)

引用 6|浏览18
暂无评分
摘要
We present an optical setup capable of mirroring an arbitrary, potentially timevarying, polarization state of an ultrashort laser pulse. The incident beam is split up in two and the polarization of one beam is mirrored by reflection off a mirror in normal incidence. Afterwards, both beams are recombined in time and space such that two collinear ultrashort laser pulses with mutually mirrored polarization, i. e., laser-pulse enantiomers, leave the setup. We employ the Jones formalism to describe the function of the setup and analyze the influence of alignment errors before describing the experimental implementation and alignment protocol. Since no wave plates are utilized, broadband pulses in a large wavelength range can be processed. In particular, we show that the setup outperforms broadband achromatic wave plates. Furthermore, since the two beams travel separately through the optical system they can be blocked independently. This opens the possibility for circular dichroism, ellipsometry, and anisotropy spectroscopy with shot-to-shot chopping and detection schemes as well as chiral coherent control applications. (C) 2017 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要