Membrane Introduction Mass Spectrometry Combined with an Orthogonal Partial-Least Squares Calibration Model for Mixture Analysis

Analytical Sciences(2017)

引用 6|浏览3
暂无评分
摘要
The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86–122.20% and relative standard deviation (RSD) of the repeatability of 1.14–4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.
更多
查看译文
关键词
Membrane introduction mass spectrometry, univariate/multivariate mixture analysis, orthogonal partial-least squares
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要