Glass-Box Program Synthesis: A Machine Learning Approach

AAAI'18/IAAI'18/EAAI'18: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence(2017)

引用 4|浏览70
暂无评分
摘要
Recently proposed models which learn to write computer programs from data use either input/output examples or rich execution traces. Instead, we argue that a novel alternative is to use a glass-box loss function, given as a program itself that can be directly inspected. Glass-box optimization covers a wide range of problems, from computing the greatest common divisor of two integers, to learning-to-learn problems. In this paper, we present an intelligent search system which learns, given the partial program and the glass-box problem, the probabilities over the space of programs. We empirically demonstrate that our informed search procedure leads to significant improvements compared to brute-force program search, both in terms of accuracy and time. For our experiments we use rich context free grammars inspired by number theory, text processing, and algebra. Our results show that (i) performing 4 rounds of our framework typically solves about 70% of the target problems, (ii) our framework can improve itself even in domain agnostic scenarios, and (iii) it can solve problems that would be otherwise too slow to solve with brute-force search.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要