Enhancer SINEs Link Pol III to Pol II Transcription in Neurons.

Cell Reports(2017)

引用 34|浏览15
暂无评分
摘要
Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity of activity-regulated genes bears features of enhancers. Enhancer SINEs (eSINEs) recruit the Pol III cofactor complex TFIIIC in a stimulus-dependent manner and are transcribed by Pol III in response to neuronal depolarization. Characterization of an eSINE located in proximity to the Fos gene (FosRSINE1) indicated that the FosRSINE1-encoded transcript interacts with Pol II at the Fos promoter and mediates Fos relocation to Pol II factories, providing an unprecedented molecular link between Pol III and Pol II transcription. Strikingly, knockdown of the FosRSINE1 transcript induces defects of both cortical radial migration in vivo and activity-dependent dendritogenesis in vitro, demonstrating that FosRSINE1 acts as a strong enhancer of Fos expression in diverse physiological contexts.
更多
查看译文
关键词
neuroscience,epigenetics,transcription,enhancers,SINEs,neuronal activity,neuronal development
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要