Formation of Surface and Quantum-Well States in Ultra Thin Pt Films on the Au(111) Surface.

MATERIALS(2017)

引用 6|浏览6
暂无评分
摘要
The electronic structure of the Pt/Au(111) heterostructures with a number of Pt monolayers n ranging from one to three is studied in the density-functional-theory framework. The calculations demonstrate that the deposition of the Pt atomic thin films on gold substrate results in strong modifications of the electronic structure at the surface. In particular, the Au(111) s-p-type Shockley surface state becomes completely unoccupied at deposition of any number of Pt monolayers. The Pt adlayer generates numerous quantum-well states in various energy gaps of Au(111) with strong spatial confinement at the surface. As a result, strong enhancement in the local density of state at the surface Pt atomic layer in comparison with clean Pt surface is obtained. The excess in the density of states has maximal magnitude in the case of one monolayer Pt adlayer and gradually reduces with increasing number of Pt atomic layers. The spin-orbit coupling produces strong modification of the energy dispersion of the electronic states generated by the Pt adlayer and gives rise to certain quantum states with a characteristic Dirac-cone shape.
更多
查看译文
关键词
gold,platinum,surface states,quantum-well states,spin splitting,heterostructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要