Gene expression profiling of the mouse gut: Effect of intestinal flora on intestinal health.

Molecular medicine reports(2017)

引用 6|浏览10
暂无评分
摘要
The present study aimed to investigate the molecular mechanisms, including potential genes, pathways and interactions, underlying the effect of intestinal flora on intestinal health. The gene expression profiles of GSE22648 were downloaded from the Gene Expression Omnibus database to screen differentially expressed genes (DEGs). The Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) functional and pathway enrichment analysis of the DEGs. DEG‑associated literature was mined using the GenCLip 2.0 online tool. Finally, GO and pathway enrichment analyses of the DEGs in the literature were processed. By comparing microbiota‑depleted mouse samples and control mouse samples, a total of 115 DEGs, including 58 upregulated genes and 57 downregulated genes, were screened. The upregulated genes were enriched into various GO terms, including microsome, oxidation reduction and heme binding, whereas the 57 downregulated DEGs were enriched in different functions, including DNA packaging and linoleic acid metabolism. A total of 19 genes, including baculoviral IAP repeat containing 5, aurora kinase A, angiotensin I converting enzyme 2 and free fatty acid receptor 2 were identified and enriched in four modules, including cell division, chromosome segregation, inflammatory bowel disease and inflammatory response. AURKA, inner centromere protein antigens 135/155 kDa, baculoviral IAP repeat containing 5, aurora kinase B and solute carrier family 22 (organic cation/zwitterion transporter) member 4 were identified as potential important genes for intestinal flora and intestinal disease treatment through their involvement in various functions, including cell division, chromosome segregation, inflammatory bowel disease and inflammatory response.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要