Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex

NeuroImage(2017)

引用 127|浏览17
暂无评分
摘要
Scientists and clinicians have traditionally targeted single brain regions with stimulation to modulate brain function and disease. However, brain regions do not operate in isolation, but interact with other regions through networks. As such, stimulation of one region may impact and be impacted by other regions in its network. Here we test whether the effects of brain stimulation can be enhanced by simultaneously targeting a region and its network, identified with resting state functional connectivity MRI. Fifteen healthy participants received two types of transcranial direct current stimulation (tDCS): a traditional two-electrode montage targeting a single brain region (left primary motor cortex [M1]) and a novel eight-electrode montage targeting this region and its associated resting state network. As a control, 8 participants also received multifocal tDCS mismatched to this network. Network-targeted tDCS more than doubled the increase in left M1 excitability over time compared to traditional tDCS and the multifocal control. Modeling studies suggest these results are unlikely to be due to tDCS effects on left M1 itself, however it is impossible to completely exclude this possibility. It also remains unclear whether multifocal tDCS targeting a network selectively modulates this network and which regions within the network are most responsible for observed effects. Despite these limitations, network-targeted tDCS appears to be a promising approach for enhancing tDCS effects beyond traditional stimulation targeting a single brain region. Future work is needed to test whether these results extend to other resting state networks and enhance behavioral or therapeutic effects.
更多
查看译文
关键词
EEG,FDI,fMRI,M1,MEP,tDCS,TMS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要