Three-dimensional GPU-accelerated active contours for automated localization of cells in large images.

PLOS ONE(2019)

引用 3|浏览17
暂无评分
摘要
Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric and densely packed. Successful cell segmentation algorithms rely identifying seed points, and are highly sensitive to variablility in cell size. In this paper, we present an efficient and highly parallel formulation for symmetric three-dimensional contour evolution that extends previous work on fast two-dimensional snakes. We provide a formulation for optimization on 3D images, as well as a strategy for accelerating computation on consumer graphics hardware. The proposed software takes advantage of Monte-Carlo sampling schemes in order to speed up convergence and reduce thread divergence. Experimental results show that this method provides superior performance for large 2D and 3D cell localization tasks when compared to existing methods on large 3D brain images.
更多
查看译文
关键词
active contours,cells,localization,images,three-dimensional,gpu-accelerated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要