Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors

ROBOTICS: SCIENCE AND SYSTEMS XIV(2018)

引用 87|浏览33
暂无评分
摘要
We present differentiable particle filters (DPFs): a differentiable implementation of the particle filter algorithm with learnable motion and measurement models. Since DPFs are end-to-end differentiable, we can efficiently train their models by optimizing end-to-end state estimation performance, rather than proxy objectives such as model accuracy. DPFs encode the structure of recursive state estimation with prediction and measurement update that operate on a probability distribution over states. This structure represents an algorithmic prior that improves learning performance in state estimation problems while enabling explainability of the learned model. Our experiments on simulated and real data show substantial benefits from end-to- end learning with algorithmic priors, e.g. reducing error rates by 80 experiments also show that, unlike long short-term memory networks, DPFs learn localization in a policy-agnostic way and thus greatly improve generalization. Source code is available at https://github.com/tu-rbo/differentiable-particle-filters .
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要