Chrome Extension
WeChat Mini Program
Use on ChatGLM

The Strength of Ruby from X-ray Diffraction under Non-Hydrostatic Compression to 68 GPa

Physics and chemistry of minerals(2014)

Cited 10|Views8
No score
Abstract
Polycrystalline ruby (α-Al2O3:Cr3+), a widely used pressure calibrant in high-pressure experiments, was compressed to 68.1 GPa at room temperature under non-hydrostatic conditions in a diamond anvil cell. Angle-dispersive X-ray diffraction experiments in a radial geometry were conducted at beamline X17C of the National Synchrotron Light Source. The stress state of ruby at high pressure and room temperature was analyzed based on the measured lattice strain. The differential stress of ruby increases with pressure from ~3.4 % of the shear modulus at 18.5 GPa to ~6.5 % at 68.1 GPa. The polycrystalline ruby sample can support a maximum differential stress of ~16 GPa at 68.1 GPa under non-hydrostatic compression. The results of this study provide a better understanding of the mechanical properties of this important material for high-pressure science. From a synthesis of existing data for strong ceramic materials, we find that the high-pressure yield strength correlates well with the ambient pressure Vickers hardness.
More
Translated text
Key words
Ruby,High-pressure,Radial X-ray diffraction,Strength
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined