Swendsen-Wang Dynamics for General Graphs in the Tree Uniqueness Region.

APPROX-RANDOM(2020)

引用 10|浏览9
暂无评分
摘要
The Swendsen-Wang dynamics is a popular algorithm for sampling from the Gibbs distribution for the ferromagnetic Ising model on a graph $G=(V,E)$. The dynamics is a global Markov chain which is conjectured to converge to equilibrium in $O(|V|^{1/4})$ steps for any graph $G$ at any (inverse) temperature $beta$. It was recently proved by Guo and Jerrum (2017) that the Swendsen-Wang dynamics has polynomial mixing time on any graph at all temperatures, yet there are few results providing $o(|V|)$ upper bounds on its convergence time. prove fast convergence of the Swendsen-Wang dynamics on general graphs in the tree uniqueness region of the ferromagnetic Ising model. In particular, when $beta u003c beta_c(d)$ where $beta_c(d)$ denotes the uniqueness/non-uniqueness threshold on infinite $d$-regular trees, we prove that the relaxation time (i.e., the inverse spectral gap) of the Swendsen-Wang dynamics is $Theta(1)$ on any graph of maximum degree $d geq 3$. Our proof utilizes a version of the Swendsen-Wang dynamics which only updates isolated vertices. We establish that this variant of the Swendsen-Wang dynamics has mixing time $O(log{|V|})$ and relaxation time $Theta(1)$ on any graph of maximum degree $d$ for all $beta u003c beta_c(d)$. We believe that this Markov chain may be of independent interest, as it is a monotone Swendsen-Wang type chain. As part of our proofs, we provide modest extensions of the technology of Mossel and Sly (2013) for analyzing mixing times and of the censoring result of Peres and Winkler (2013). Both of these results are for the Glauber dynamics, and we extend them here to general monotone Markov chains. This class of dynamics includes for example the heat-bath block dynamics, for which we obtain new tight mixing time bounds.
更多
查看译文
关键词
censoring,mixing time,relaxation time,spatial mixing,Swendsen-Wang dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要