Optimal control of nonlinear switched system in an uncoupled microbial fed-batch fermentation process.

Journal of the Franklin Institute(2018)

引用 15|浏览8
暂无评分
摘要
The bio-dissimilation of glycerol to 1,3-propanediol (1,3-PD) is a complex bioprocess due to the multiple inhibitions of substrate and products onto the cell growth. In consideration of both the inhibition mechanisms of 3-hydroxypropionaldehyde (3-HPA) and the transport modes of glycerol and 1,3-PD across the cell membrane, we establish a novel switched system which is represented by a ten-dimensional nonlinear dynamical equation containing both extracellular and intracellular environments. The uncoupled microbial fed-batch fermentation process are modeled using the switched system which the glycerol and alkali are respectively poured into. Taking the feeding rates of glycerol and alkali, the switching times and the mode sequence as the control variables, an optimal control model is proposed with the concentration of the terminal time 1,3-PD as performance index. In order to maximize the yield of 1,3-PD, the control parameterization technique and the exact penalty function method are used to solve the considered problem. Numerical results show that under the obtained optimal feeding rates of glycerol and alkali, switching times and mode sequence, the productivity of 1,3-PD at the terminal time is increased significantly compared with previous results.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要