Accelerated Labeling of Discrete Abstractions for Autonomous Driving Subject to LTL Specifications.

Brian Paden,Peng Liu, Schuyler Cullen

arXiv: Artificial Intelligence(2018)

引用 23|浏览3
暂无评分
摘要
Linear temporal logic and automaton-based run-time verification provide a powerful framework for designing task and motion planning algorithms for autonomous agents. The drawback to this approach is the computational cost of operating on high resolution discrete abstractions of continuous dynamical systems. In particular, the computational bottleneck that arises is converting perceived environment variables into a labeling function on the states of a Kripke structure or analogously the transitions of a labeled transition system. This paper presents the design and empirical evaluation of an approach to constructing the labeling function that exposes a large degree of parallelism in the operation as well as efficient memory access patterns. The approach is implemented on a commodity GPU and empirical results demonstrate the efficacy of the labeling technique for real-time planning and decision-making.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要