Finite sample expressive power of small-width ReLU networks.

arXiv: Learning(2018)

引用 24|浏览23
暂无评分
摘要
We study universal finite sample expressivity of neural networks, defined as the capability to perfectly memorize arbitrary datasets. For scalar outputs, existing results require a hidden layer as wide as $N$ to memorize $N$ data points. In contrast, we prove that a 3-layer (2-hidden-layer) ReLU network with $4 sqrt {N}$ hidden nodes can perfectly fit any arbitrary dataset. For $K$-class classification, we prove that a 4-layer ReLU network with $4 sqrt{N} + 4K$ hidden neurons can memorize arbitrary datasets. For example, a 4-layer ReLU network with only 8,000 hidden nodes can memorize datasets with $N$ = 1M and $K$ = 1k (e.g., ImageNet). Our results show that even small networks already have tremendous overfitting capability, admitting zero empirical risk for any dataset. We also extend our results to deeper and narrower networks, and prove converse results showing necessity of $Omega(N)$ parameters for shallow networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要