Efficient Surfel-Based Slam Using 3d Laser Range Data In Urban Environments

ROBOTICS: SCIENCE AND SYSTEMS XIV(2018)

引用 199|浏览88
暂无评分
摘要
Accurate and reliable localization and mapping is a fundamental building block for most autonomous robots. For this purpose, we propose a novel, dense approach to laser-based mapping that operates on three-dimensional point clouds obtained from rotating laser sensors. We construct a surfel-based map and estimate the changes in the robot's pose by exploiting the projective data association between the current scan and a rendered model view from that surfel map. For detection and verification of a loop closure, we leverage the map representation to compose a virtual view of the map before a potential loop closure, which enables a more robust detection even with low overlap between the scan and the already mapped areas. Our approach is efficient and enables real-time capable registration. At the same time, it is able to detect loop closures and to perform map updates in an online fashion. Our experiments show that we are able to estimate globally consistent maps in large scale environments solely based on point cloud data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要