Chrome Extension
WeChat Mini Program
Use on ChatGLM

Complementary Segmentation of Primary Video Objects with Reversible Flows

APPLIED SCIENCES-BASEL(2022)

Cited 0|Views72
No score
Abstract
Segmenting primary objects in a video is an important yet challenging problem in intelligent video surveillance, as it exhibits various levels of foreground/background ambiguities. To reduce such ambiguities, we propose a novel formulation via exploiting foreground and background context as well as their complementary constraint. Under this formulation, a unified objective function is further defined to encode each cue. For implementation, we design a complementary segmentation network (CSNet) with two separate branches, which can simultaneously encode the foreground and background information along with joint spatial constraints. The CSNet is trained on massive images with manually annotated salient objects in an end-to-end manner. By applying CSNet on each video frame, the spatial foreground and background maps can be initialized. To enforce temporal consistency effectively and efficiently, we divide each frame into superpixels and construct a neighborhood reversible flow that reflects the most reliable temporal correspondences between superpixels in far-away frames. With such a flow, the initialized foregroundness and backgroundness can be propagated along the temporal dimension so that primary video objects gradually pop out and distractors are well suppressed. Extensive experimental results on three video datasets show that the proposed approach achieves impressive performance in comparisons with 22 state-of-the-art models.
More
Translated text
Key words
primary object segmentation,video,objective function,complementary CNNs,neighborhood reversibility
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined