Cellular uptake mechanism and clearance kinetics of fluorescence-labeled glycyrrhetinic acid and glycyrrhetinic acid-modified liposome in hepatocellular carcinoma cells.

Yuqi Sun,Jinghua Lu, Dongxue Yan, Liping Shen,Haiyang Hu,Dawei Chen

Environmental toxicology and pharmacology(2017)

引用 18|浏览1
暂无评分
摘要
Glycyrrhetinic acid (GA) is a natural pentacyclic triterpene derivative that exerts significant effects in the suppression of liver cancer. The receptors of GA on liver cells and hepatocellular carcinoma (HCC) cells have drawn broad attention. The effects of GA might depend on its transport into and out of cells. However, the question has not been previously addressed despite its obvious and fundamental importance. In this paper, GA and GA-modified liposome (GA-Lip) were labeled with fluorescein isothiocyanate (FITC) or coumarin 6 (Cou6) using chemical or pharmaceutical techniques. The transport courses of FITC-GA and GA-Cou6-Lip were studied in HepG2 cells in vitro. We found that the fluorescence labeled GA and GA-Lip uptake and clearance were time-dependent. FITC-GA uptake involved passive diffusion and active transport, and the receptors were in the cytomembrane proteins. GA-Cou6-Lip uptake was mediated by caveolae-dependent endocytosis. In addition, FITC-GA and GA-Cou6-Lip clearance of the HCC cells fitted exponential decay and second-order processes, respectively. These findings provide new insights into the anti-HCC actions of GA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要