Proprotein convertase expression in the fat body is essential for a normal antimicrobial peptide response and bacterial host defense.

FASEB JOURNAL(2017)

引用 6|浏览14
暂无评分
摘要
Invading pathogens provoke robust innate immune responses in Dipteran insects, such as Drosophila melanogaster. In a systemic bacterial infection, a humoral response is induced in the fat body. Gram-positive bacteria trigger the Toll signaling pathway, whereas gram-negative bacterial infections are signaled via the immune deficiency (IMD) pathway. We show here that the RNA interference-mediated silencing of Furin1-a member of the proprotein convertase enzyme family-specifically in the fat body, results in a reduction in the expression of antimicrobial peptides. This, in turn, compromises the survival of adult fruit flies in systemic infections that are caused by both gram-positive and -negative bacteria. Furin1 plays a nonredundant role in the regulation of immune responses, as silencing of Furin2, the other member of the enzyme family, had no effect on survival or the expression of antimicrobial peptides upon a systemic infection. Furin1 does not directly affect the Toll or IMD signaling pathways, but the reduced expression of Furin1 up-regulates stress response factors in the fat body. We also demonstrate that Furin1 is a negative regulator of the Janus kinase/signal transducer and activator of transcription signaling pathway, which is implicated in stress responses in the fly. In summary, our data identify Furin1 as a novel regulator of humoral immunity and cellular stress responses in Drosophila.
更多
查看译文
关键词
innate immunity,stress,Toll pathway,IMD pathway,JAK/STAT pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要