谷歌浏览器插件
订阅小程序
在清言上使用

Generation of Bacteriophage-Insensitive Mutants of Streptococcus Thermophilus Via an Antisense RNA CRISPR-Cas Silencing Approach.

Applied and environmental microbiology(2018)

引用 17|浏览14
暂无评分
摘要
ABSTRACT Predation of starter lactic acid bacteria such as Streptococcus thermophilus by bacteriophages is a persistent and costly problem in the dairy industry. CRISPR-mediated bacteriophage insensitive mutants (BIMs), while straightforward to generate and verify, can quickly be overcome by mutant phages. The aim of this study was to develop a tool allowing the generation of derivatives of commercial S. thermophilus strains which are resistant to phage attack through a non-CRISPR-mediated mechanism, with the objective of generating BIMs exhibiting stable resistance against a range of isolated lytic S. thermophilus phages. To achieve this, standard BIM generation was complemented by the use of the wild-type (WT) strain which had been transformed with an antisense mRNA-generating plasmid (targeting a crucial CRISPR-associated [cas] gene) in order to facilitate the generation of non-CRISPR-mediated BIMs. Phage sensitivity assays suggest that non-CRISPR-mediated BIMs exhibit some advantages compared to CRISPR-mediated BIMs derived from the same strain. IMPORTANCE The outlined approach reveals the presence of a powerful host-imposed barrier for phage infection in S. thermophilus. Considering the detrimental economic consequences of phage infection in the dairy processing environment, the developed methodology has widespread applications, particularly where other methods may not be practical or effective in obtaining robust, phage-tolerant S. thermophilus starter strains.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要