谷歌浏览器插件
订阅小程序
在清言上使用

Functional Selectivity of Gpcr-Directed Drug Action Through Location Bias

˜The œFASEB journal(2017)

引用 145|浏览11
暂无评分
摘要
G-protein-coupled receptors (GPCRs) are increasingly recognized to operate from intracellular membranes as well as the plasma membrane. The β2-adrenergic GPCR can activate Gs-linked cyclic AMP (Gs-cAMP) signaling from endosomes. We show here that the homologous human β1-adrenergic receptor initiates an internal Gs-cAMP signal from the Golgi apparatus. By developing a chemical method to acutely squelch G-protein coupling at defined membrane locations, we demonstrate that Golgi activation contributes significantly to the overall cellular cAMP response. Golgi signaling utilizes a preexisting receptor pool rather than receptors delivered from the cell surface, requiring separate access of extracellular ligands. Epinephrine, a hydrophilic endogenous ligand, accesses the Golgi-localized receptor pool by facilitated transport requiring the organic cation transporter 3 (OCT3), whereas drugs can access the Golgi pool by passive diffusion according to hydrophobicity. We demonstrate marked differences, among both agonist and antagonist drugs, in Golgi-localized receptor access and show that β-blocker drugs currently used in the clinic differ markedly in ability to antagonize the Golgi signal. We propose 'location bias' as a new principle for achieving functional selectivity of GPCR-directed drug action.
更多
查看译文
关键词
Cardiovascular biology,Cell signalling,Membranes,Chemistry/Food Science,general,Biochemical Engineering,Biochemistry,Cell Biology,Bioorganic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要