谷歌浏览器插件
订阅小程序
在清言上使用

Reparameterization of an Accurate, Few-Parameter Implicit Solvation Model for Quantum Chemistry: Composite Method for Implicit Representation of Solvent, CMIRS V. 1.1.

Journal of chemical theory and computation(2016)

引用 18|浏览6
暂无评分
摘要
CMIRS (composite method for implicit representation of solvent) is a relatively new implicit solvation model that adds terms representing solute-solvent dispersion, Pauli repulsion, and hydrogen bonding to a continuum treatment of electrostatics. A small error in the original implementation of the dispersion term, but one that can modify dispersion energies by up to 8 kcal/mol in some cases, necessitates refitting the parameters in the model, which we do here. We refer to the modified implementation and parameter set as CMIRS v. 1.1. While the dispersion energies change in nontrivial ways, an increase in the attractive dispersion term in the new implementation is largely offset by an increase in the Pauli repulsion during the fitting process, such that overall statistical errors are virtually unchanged with respect to v. 1.0 of the model, for a large database of experimental solvation free energies for molecules and ions. Overall, we obtain mean unsigned errors of <0.7 kcal/mol when the solvent is cyclohexane or benzene, <1.5 kcal/mol for water, and <2.8 kcal/mol for dimethyl sulfoxide and acetonitrile, despite using no more than five empirical parameters per solvent. For the important but difficult case of ionic solutes in water, mean unsigned errors are <2.9 kcal/mol.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要