Hydration-controlled anisotropic and giant permittivity in TEG-functionalized eumelanin.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2017)

引用 5|浏览30
暂无评分
摘要
Although it has long been known that the peculiar electronic-ionic conductor behavior of eumelanin is critically dependent on hydration, the detailed mechanisms by which water-polymer interactions control and affect the conduction properties have remained largely obscure. In this paper, we report a remarkable anisotropy and giant polarization effect in a synthetic eumelanin (TEGMe) chemically functionalized with hydrophilic TEG residues. FT-IR analyses of water sorption isotherms and AC measurements were consistent with a microporous structure binding or hosting mainly isolated water molecules. In contrast, similar experiments on a commercial synthetic eumelanin (AMe) used as a reference were suggestive of a bulk macroporous scaffold binding or hosting liquid water. These data disclosed for the first time the differential impact on eumelanin conductivity of vapor, liquid and ice-like forms of water adsorbed onto or embedded into the polymer layer. It is thus demonstrated, for the first time, that hydration controls the conduction properties of eumelanin in a more complex manner than is commonly believed, involving, besides the reported semiquinone comproportionation equilibria, the mode of interaction of water molecules as governed by both the chemical and morphological features of the polymer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要