Increased humidity can soften glassy Langmuir polymer films by two mechanisms: plasticization of the polymer material, and suppression of the evaporation cooling effect.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2017)

引用 11|浏览22
暂无评分
摘要
Glassy Langmuir polymer films exhibit a rapid increase in surface pressure at high compression. High relative humidity typically mitigates this increase in surface pressure. In an attempt to understand the origin of this phenomenon, we investigated the effects of relative humidity on surface pressure-area isotherm properties for four different types of polymers with similar bulk glass transition temperatures: poly(D, L-lactic-co-glycolic acid) (PLGA, T-g approximate to 45 degrees C), poly(vinyl acetate) (PVAc, T-g approximate to 41 degrees C), poly(n-propyl methacrylate) (PnPMA, T-g approximate to 41 degrees C), and poly(vinyl stearate) (PVS, T-g approximate to 47 degrees C, T-m approximate to 47 degrees C). Bulk PLGA and PVAc materials are slightly hygroscopic, although they are insoluble in water; the bulk glass transition temperatures of these polymers are decreased under high humidity conditions. Analogously, the surface pressures of Langmuir PLGA and PVAc films become significantly reduced under high relative humidity, which can, therefore, be attributed mainly to the plasticizing effect of humidity on the polymer. X-ray reflectivity (XR) measurements suggest that humidity, however, does not significantly affect the molecular-level structure of the Langmuir polymer film. Interestingly, in the case of PnPMA, although its bulk glass transition temperature is unaffected by humidity levels, Langmuir films formed from PnPMA show significantly decreased surface pressures at high humidity conditions. We confirmed that this result is not an artifact associated with surface pressure measurements; humidity does not influence the wetting characteristics of the Wilhelmy probe at the air-polymer-water interface. It appears that the humidity-dependent behavior of Langmuir PnPMA films can only be explained in terms of the effects of relative humidity on the rate of water evaporation and thus the temperature at the surface of the polymer film; high humidity suppresses the evaporation of water and thus increases the temperature of the polymer-coated interface, resulting in a softening of the polymer film. We experimentally confirmed that increasing the relative humidity from about 30-40% to about 85-90% has an equivalent effect on PnPMA surface pressure as increasing the temperature of the system by about 2 degrees C. A heat and mass transfer analysis supports this correspondence. Langmuir PVS films exhibit a completely different behavior than PLGA, PVAc and PnPMA systems; PVS forms isolated twodimensional crystalline domains at the air-water interface, and their surface pressure-area behavior is commensurate to that of colloidal particles spread at the air-water interface. Humidity seems to affect the surface pressure of PVS through a mechanism similar to the PnPMA situation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要