Pigment Epithelium-Derived Factor (PEDF) Improves Ischemic Cardiac Functional Reserve Through Decreasing Hypoxic Cardiomyocyte Contractility Through PEDF Receptor (PEDF-R).

Peng Lu, Yi-Qian Zhang,Hao Zhang, Yu-Feng Li,Xiao-Yu Wang,Hao Xu,Zhi-Wei Liu,Lei Li, Hong-Yan Dong,Zhong-Ming Zhang

Journal of the American Heart Association(2016)

引用 11|浏览8
暂无评分
摘要
BACKGROUND:Pigment epithelium-derived factor (PEDF), which belongs to the noninhibitory serpin family, has shown the ability to stimulate several physiological processes, such as antiangiogenesis, anti-inflammation, and antioxidation. In the present study, the effects of PEDF on contractility and calcium handling of rat ventricular myocytes were investigated. METHODS AND RESULTS:Adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-lentivirus was delivered into the myocardium along and away from the infarction border to overexpress PEDF. Video edge detection was used to measure myocyte shortening in vitro. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator, Fura-2-acetoxymethyl ester. PEDF local overexpression enhanced cardiac functional reserve in AMI rats and reduced myocardial contracture bordering the infracted area. Exogenous PEDF treatment (10 nmol/L) caused a significant decrease in amplitudes of isoproterenol-stimulated myocyte shortening, Ca(2+) transients, and caffeine-evoked Ca(2+) transients in vitro. We then tested a potential role for PEDF receptor-mediated effects on upregulation of protein kinase C (PKC) and found evidence of signaling through the diacylglycerol/PKCα pathway. We also confirmed that pretreatment of cardiomyocytes with PEDF exhibited dephosphorylation of phospholamban at Ser(16), which could be attenuated with PKC inhibition. CONCLUSIONS:The results suggest that PEDF depresses myocyte contractility by suppressing phosphorylation of phospholamban and Ca(2+) transients in a PKCα-dependent manner through its receptor, PEDF receptor, therefore improving cardiac functional reserve during AMI.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要