rBmTI-6 attenuates pathophysiological and inflammatory parameters of induced emphysema in mice.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2018)

引用 6|浏览11
暂无评分
摘要
Protease/anti-protease imbalance is the main pathogenic mechanism of emphysema and protease inhibitors have been recognized as potential molecules to treat the disease conditions. In this work the rBmTI-6 first domain (rBmTI-6-D1), a recombinant Kunitz-type serine proteinase inhibitor, was used to verify its effect in prevention or minimization of PPE-induced emphysema in mice. C57BL/6 mice were submitted to a PPE-induced emphysema model and treated with rBmTI-6-D1 before the emphysema development. We showed that the rBmTI-6D1 treatment was sufficient to avoid the loss of elastic recoil, an effective decrease in alveolar enlargement and in the number of macrophages and lymphocytes in bronchoalveolar lavage fluid. Proteolytic analysis showed a significant increase in elastase activity in PPE-VE (induced emphysema) group that is controlled by rBmTI-6D1. Kallikrein activity was decreased in the PPE-rBmTI6 (induced emphysema and inhibitor treated) group when compared to PPE-VE group. Although rBmTI-6-D1, did not present a neutrophil elastase (NE) inhibitory activity, the results show that the inhibitor interfered in the pathway of NE secretion in PPE-emphysema mice model. The role of rBmTI-6-D1 in the prevention of emphysema development in the mice model, apparently, is related with a control of inflammatory response due the trypsin/kallikrein inhibitory activity of rBmTI-6-D1. (C) 2018 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
COPD,Emphysema,Serine protease inhibitor,rBmTI-6
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要