谷歌浏览器插件
订阅小程序
在清言上使用

Entropy-Driven Reversible Agglomeration of Crown Ether Capped Gold Nanoparticles

Chemistry(2018)

引用 5|浏览47
暂无评分
摘要
It is shown that plasmonic gold nanoparticles functionalised with a thiolated 18-crown-6 ligand shell agglomerate spontaneously from aqueous dispersion at elevated temperatures. This process takes place over a narrow temperature range, is accompanied by a colour change from red to purple-blue and is fully reversible. Moreover, the temperature at which it occurs can be adjusted by the degree of complexation of the crown ether moiety with appropriate cations. More complexation leads to higher transition temperatures. The process has been studied by UV/Vis spectroscopy, electron microscopy, dynamic light scattering and zeta potential measurements. A thermodynamic rationale is provided to suggest an entropy-driven endothermic agglomeration process based on attractive hydrophobic interactions of the complexed crowns that are competing against electrostatic repulsion of the charged ligand shells.
更多
查看译文
关键词
aggregation,crown ether,thermoresponsive,nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要