The short cosyntropintest revisited - new normal reference range using LCMSMS.

JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM(2018)

引用 46|浏览48
暂无评分
摘要
The cosyntropin test is used to diagnose adrenal insufficiency (AI) and nonclassical congenital adrenal hyperplasia (NCCAH). Current cutoffs for cortisol and 17-hydroxyprogesterone (17-OHP) are derived from nonstandardized immunoassays. Liquid chromatography tandem mass spectrometry (LC-MS/MS) offers direct measurement of steroids, prompting the need to re-establish normal ranges. The goal of this study was to define cutoff values for cortisol and 17-OHP in serum by LC-MS/MS 30 and 60 minutes after intravenous administration of 250 A mu g tetracosactide acetate to healthy volunteers and to compare the results with LC-MS/MS with routine immunoassays. Cosyntropin testing was performed in healthy subjects (n = 138) and in patients referred for evaluation of adrenocortical function (n = 94). Steroids were assayed by LC-MS/MS and compared with two immunoassays used in routine diagnostics (Immulite and Roche platforms). The cutoff level for cortisol was defined as the 2.5% percentile in healthy subjects not using oral estrogens (n = 121) and for 17-OHP as the 97.5% percentile. Cortisol cutoff levels for LC-MS/MS were 412 and 485 nmol/L at 30 and 60 minutes, respectively. Applying the new cutoffs, 13 of 60 (22%) subjects who had AI according to conventional criteria now had a normal test result. For 17-OHP, the cutoff levels were 8.9 and 9.0 nmol/L at 30 and 60 minutes, respectively. LC-MS/MS provides cutoff levels for cortisol and 17-OHP after cosyntropin stimulation that are lower than those based on immunoassays, possibly because cross-reactivity between steroid intermediates and cortisol is eliminated. This reduces the number of false-positive tests for AI and false-negative tests for NCCAH.LC-MS/MS-based cut-off levels for s-cortisol and s-17OHP in the cosyntropin stimulation test are lower than recommended in current guidelines, and correlate well with modern immunoassays.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要