Engineered production of short chain acyl-coenzyme A esters in S. cerevisiae.

ACS synthetic biology(2018)

引用 12|浏览6
暂无评分
摘要
Short chain acyl-coenzyme A esters serve as intermediate compounds in fatty acid biosynthesis, and the production of polyketides, biopolymers and other value-added chemicals. S. cerevisiae is a model organism that has been utilized for the biosynthesis of such biologically and economically valuable compounds. However, its limited repertoire of short chain acyl-CoAs effectively prevents its application as a production host for a plethora of natural products. Therefore, we introduced biosynthetic metabolic pathways to five different acyl-CoA esters into S. cerevisiae. Our engineered strains provide the following acyl-CoAs: propionyl-CoA, methylmalonyl-CoA, n-butyryl-CoA, isovaleryl-CoA and n-hexanoyl-CoA. We established a yeast-specific metabolite extraction protocol to determine the intracellular acyl-CoA concentrations in the engineered strains. Propionyl-CoA was produced at 4-9 µM; methylmalonyl-CoA at 0.5 µM; and isovaleryl-CoA, n-butyryl-CoA and n-hexanoyl-CoA at 6 µM each. The acyl-CoAs produced in this study are common building blocks of secondary metabolites and will enable the engineered production of a variety of natural products in S. cerevisiae. By providing this toolbox of acyl-CoA producing strains, we have laid the foundation to explore S. cerevisiae as a heterologous production host for novel secondary metabolites.
更多
查看译文
关键词
metabolic engineering,S. cerevisiae,heterologous pathway,precursor engineering,platform molecules,acyl-coenzyme A
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要