Acute Coronary Syndrome remodels the antiplatelet aggregation properties of high-density lipoprotein particle subclasses.

JOURNAL OF THROMBOSIS AND HAEMOSTASIS(2018)

引用 11|浏览12
暂无评分
摘要
Background: Although HDLs have antithrombotic effects by reducing platelet activation, the relationship between HDL levels and the risk of acute coronary syndrome (ACS) is unclear, as HDL particles are heterogeneous in composition and biological properties. Objective: To characterize the effects of HDL2 and HDL3 subclasses from ACS patients and non-coronary artery disease (CAD) subjects on platelet activation. Methods: We measured platelet aggregation and ex vivo thrombus formation, analyzed signaling pathways by flow cytometry, and performed a targeted lipidomics analysis on HDL subclasses. Results: Analysis of human platelet aggregation in suspension, adhesion on von Willebrand factor and thrombus formation on collagen under arterial shear demonstrated that HDL2 from ACS patients had higher antiplatelet potency than HDL3 from ACS patients and HDL from non-CAD subjects. HDL binding to scavenger receptor class B type I was essential for this effect. A lipidomics analysis revealed that HDL2 from ACS patients had more oxidized polyunsaturated fatty acids (PUFAs). An inverse correlation between the concentrations of 9-hydroxyoctadecadienoic acid (9-HODE), 13-hydroxyoctadecadienoic acid (13-HODE), the eicosapentaenoic acid metabolite 18-hydroxyeicosapentaenoic acid (18-HEPE) and hydroxyeicosatetraenoic acid isomers in HDL2 and platelet aggregation was observed. This relationship was further demonstrated by the direct inhibitory effects of 18-HEPE, 9-HODE, 13-HODE, 17-hydroxydocosahexaenoic acid and 14-hydroxydocosahexaenoic acid on collagen-related peptide-induced platelet aggregation, indicating that oxidized PUFAs contribute to the antithrombotic effect of ACS HDL2. Conclusions: Our data shed new light on the antiplatelet effects of HDL subclasses, and suggest physiological adaptation through the modulation of HDL properties in ACS patients that may limit their platelet-dependent thrombotic risk.
更多
查看译文
关键词
acute coronary syndrome,HDL remodeling,HDL subclasses,oxidized polyunsaturated fatty acids,platelet aggregation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要