Topological phase transition with nanoscale inhomogeneity in (BiIn)Se.

NANO LETTERS(2018)

引用 8|浏览6
暂无评分
摘要
Topological insulators are a class of band insulators with nontrivial topology, a result of band inversion due to the strong spin-orbit coupling. The transition between topological and normal insulator can be realized by tuning the spin-orbit coupling strength and has been observed experimentally. However, the impact of chemical disorders on the topological phase transition was not addressed in previous studies. Herein, we report a systematic scanning tunneling microscopy/spectroscopy and first-principles study of the topological phase transition in single crystals of In-doped Bi2Se3. Surprisingly, no band gap closure was observed across the transition. Furthermore, our spectroscopic-imaging results reveal that In defects are extremely effective "suppressors" of the band inversion, which leads to microscopic phase separation of topological-insulator-like and normal-insulator-like nano regions across the "transition". The observed topological electronic inhomogeneity demonstrates the significant impact of chemical disorders in topological materials, shedding new light on the fundamental understanding of topological phase transition.
更多
查看译文
关键词
Topological phase transition,nanoscale inhomogeneity,In defects,STM,first-principles calculation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要