谷歌浏览器插件
订阅小程序
在清言上使用

Glycosylation-enhanced Biocompatibility of the Supramolecular Hydrogel of an Anti-Inflammatory Drug for Topical Suppression of Inflammation.

Acta biomaterialia(2018)

引用 22|浏览8
暂无评分
摘要
Intravitreal/periocular injection of triamcinolone acetonide (TA) suspension is a common uveitis treatment, but it displays a high risk for serious side effects (e.g., high intraocular pressure, retinal toxicity). We report here an intravitreally injectable thermosensitive glycosylated TA (TA-SA-Glu) hydrogel, formed by covalently conjugating glucosamine (Glu) with succinate TA (TA-SA), for treating uveitis. The TA-SA-Glu hydrogelator forms a supramolecular hydrogel spontaneously in aqueous solution with a minimal gelation concentration of 0.25 wt%. Structural analysis revealed that hydrogen bonds assisted by hydrophobic interaction resulted in self-assembled nanofibers. Rheology analysis demonstrated that this TA-SA-Glu hydrogel exhibited a typical thixotropic property. Sustained release of both TA-SA-Glu and TA from the hydrogel occurred throughout the 3-day in vitro release study. The obtained TA-SA-Glu hardly caused cytotoxicity against ARPE-19 and RAW264.7 cells after 2411 of incubation at drug concentration up to 600 mu M. In particular, TA-SA-Glu exhibited a comparable anti-inflammatory efficacy to TA in terms of inhibiting the production of nitric oxide, tumor necrosis factor-a, and interleukin-6 in activated RAW264.7 macrophages. Following a single intravitreal injection, 69 nmol TA-SA-Glu hydrogel caused minimal apparent retinal toxicity, whereas the TA suspension displayed significant effects in terms of localized retinal toxicity. A single intravitreal injection of TA-SA-Glu hydrogel was more effective in controlling inflammatory response than that of the TA suspension treatment, particularly in down regulating the pro-inflammatory Th1 and Th17 effector responses for treating experimental autoimmune uveitis. This study strongly indicates that supramolecular TA-SA-Glu hydrogels may represent a new option for posterior uveitis management. Statement of Significance Intravitreal/periocular injection of triamcinolone acetonide (TA) suspension is a common uveitis treatment, but suffers a high risk for serious side effects (e.g., high intraocular pressure, retinal toxicity). We generated an injectable glycosylated triamcinolone acetonide hydrogelator (TA-SA-Glu) hydrogel for treating uveitis. Following a single intravitreal injection, the proposed TA-SA-Glu hydrogel hardly caused apparent retinal toxicity at a dosage of 69 nmol per eye. Furthermore, TA-SA-Glu hydrogel was more effective in controlling non-infectious uveitis over than a TA suspension, particularly in terms of down-regulating the pro-inflammatory Th1 and Th17 effector responses for treating experimental autoimmune uveitis (EAU). This study strongly indicates that TA-SA-Glu supramolecular hydrogels may represent a new option for the management of various intraocular inflammations. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Self-assembly,Thermosensitive hydrogel,In vivo,Noninfectious uveitis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要