Faster simulations with a 5 fs timestep for lipids in the CHARMM forcefield.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION(2018)

引用 32|浏览19
暂无评分
摘要
The performance of all-atom molecular dynamics simulations is limited by an integration time step of 2 fs, which is needed to resolve the fastest degrees of freedom in the system, namely, the vibration of bonds and angles involving hydrogen atoms. The virtual interaction sites (VIS) method replaces hydrogen atoms by massless virtual interaction sites to eliminate these degrees of freedom while keeping intact nonbonded interactions and the explicit treatment of hydrogen atoms. We have modified the existing VIS algorithm for most lipids in the popular CHARMM36 force field by increasing the hydrogen atom masses at regular intervals in the lipid acyl chains and obtained lipid properties and pore formation free energies in very good agreement with those calculated in simulations without VIS. Our modified VIS scheme enables a 5 fs time step resulting in a significant performance gain for all-atom simulations of membranes. The method has the potential to make longer time and length scales accessible in all-atom simulations of membrane-protein complexes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要