谷歌浏览器插件
订阅小程序
在清言上使用

Temperature Regulates NF-κB Dynamics and Function Through Timing of A20 Transcription

Proceedings of the National Academy of Sciences of the United States of America(2018)

引用 62|浏览24
暂无评分
摘要
Significance Inflammation is often accompanied by temperature change, but little is known about the role of temperature in the inflammatory response. We show that physiologically relevant temperature changes significantly perturb NF-κB dynamics following TNFα stimulation in single cells. Using experimentation informed by mathematical modeling, we found that these changes were mediated, at least in part, through the key feedback gene TNFAIP3/A20. Curtailing A20 expression removed temperature sensitivity across the fever range (37 °C to 40 °C). Gene expression was generally unaffected between these temperatures, although a select set of NF-κB−regulated genes was up-regulated at early time points. These genes were predominantly involved in inflammation, signaling, and cell fate. The cellular response to inflammation may therefore be mechanistically and functionally regulated by temperature. NF-κB signaling plays a pivotal role in control of the inflammatory response. We investigated how the dynamics and function of NF-κB were affected by temperature within the mammalian physiological range (34 °C to 40 °C). An increase in temperature led to an increase in NF-κB nuclear/cytoplasmic oscillation frequency following Tumor Necrosis Factor alpha (TNFα) stimulation. Mathematical modeling suggested that this temperature sensitivity might be due to an A20-dependent mechanism, and A20 silencing removed the sensitivity to increased temperature. The timing of the early response of a key set of NF-κB target genes showed strong temperature dependence. The cytokine-induced expression of many (but not all) later genes was insensitive to temperature change (suggesting that they might be functionally temperature-compensated). Moreover, a set of temperature- and TNFα-regulated genes were implicated in NF-κB cross-talk with key cell-fate–controlling pathways. In conclusion, NF-κB dynamics and target gene expression are modulated by temperature and can accurately transmit multidimensional information to control inflammation.
更多
查看译文
关键词
Inflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要