In vitro activity characterization of the tomato SnRK1 complex proteins.

Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics(2018)

引用 1|浏览7
暂无评分
摘要
Plant Sucrose non-Fermenting 1-Related Protein Kinase1 (SnRK1) complexes are members of the Snf1/AMPK/SnRK protein kinase family and play important roles in many aspects of metabolism. In tomato (Solanum lycopersicum, Sl), only one α-subunit of the SnRK1 complex, SlSnRK1.1, has been characterized to date. In this study, the phylogenetic placement and in vitro kinase activity of a second tomato SnRK1 α-subunit, SlSnRK1.2, were characterized. Interestingly, in the phylogenetic analysis of SnRK1 sequences from monocots and dicots SlSnRK1.2 clusters only with other Solanaceae SnRK1.2 sequences, suggesting possible functional divergence of these kinases from other SnRK1 kinases. For analysis of kinase activity, SlSnRK1.2 was able to autophosphorylate, phosphorylate the complex β-subunits, and phosphorylate the SnRK1 AMARA peptide substrate, all with drastically lower overall kinase activity compared to SlSnRK1.1. Activation by the upstream kinase SlSnAK was able to increase the kinase activity of both SlSnRK1.1 and SlSnRK1.2, although the increase is less dramatic for SlSnRK1.2. The highest kinase activity on the AMARA peptide for SlSnRK1.2 was seen when reconstituting the complex in vitro with SlSip1 as the β-subunit. In comparison, SlSnRK1.1 showed the lowest kinase activity on the AMARA peptide when SlSip1 was used. These studies suggest the SlSnRK1.2 phylogenetic divergence and lower SlSnRK1.2 kinase activity compared to SlSnRK1.1 may be indicative of different in vivo roles for each kinase.
更多
查看译文
关键词
Protein kinase,Phosphorylation,SnAK,SnRK
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要