High-resolution crystal structures and STD NMR mapping of human ABO(H) blood group glycosyltransferases in complex with trisaccharide reaction products suggest a molecular basis for product release.

GLYCOBIOLOGY(2017)

引用 4|浏览34
暂无评分
摘要
The human ABO(H) blood group A- and B-synthesizing glycosyltransferases GTA and GTB have been structurally characterized to high resolution in complex with their respective trisaccharide antigen products. These findings are particularly timely and relevant given the dearth of glycosyltransferase structures collected in complex with their saccharide reaction products. GTA and GTB utilize the same acceptor substrates, oligosaccharides terminating with alpha-l-Fucp-(1 -> 2)-beta-d-Galp-OR (where R is a glycolipid or glycoprotein), but use distinct UDP donor sugars, UDP-N-acetylgalactosamine and UDP-galactose, to generate the blood group A (alpha-l-Fucp-(1 -> 2)[alpha-d-GalNAcp-(1 -> 3)]-beta-d-Galp-OR) and blood group B (alpha-l-Fucp-(1 -> 2)[alpha-d-Galp-(1 -> 3)]-beta-d-Galp-OR) determinant structures, respectively. Structures of GTA and GTB in complex with their respective trisaccharide products reveal a conflict between the transferred sugar monosaccharide and the beta-phosphate of the UDP donor. Mapping of the binding epitopes by saturation transfer difference NMR measurements yielded data consistent with the X-ray structural results. Taken together these data suggest a mechanism of product release where monosaccharide transfer to the H-antigen acceptor induces active site disorder and ejection of the UDP leaving group prior to trisaccharide egress.
更多
查看译文
关键词
glycosyltransferases,human ABO(H) blood group enzymes,product-bound enzyme structure,STD NMR,X-ray crystallography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要