Intelligent Metal Carbonyl Metal-Organic Framework Nanocomplex for Fluorescent Traceable H 2 O 2 -Triggered CO Delivery.

CHEMISTRY-A EUROPEAN JOURNAL(2018)

引用 44|浏览14
暂无评分
摘要
The recognized therapeutic benefits from carbon monoxide (CO) have caused booming attention to develop a CO therapy for various major diseases, such as cancer. However, the controlled release of CO gas and the monitoring of the CO release are vitally important to the ondemand CO administration for a safe and efficient therapy, but greatly challenging. In this work, a new CO-releasing nanocomplex was constructed by the adsorption and coordination of manganese carbonyl ([MnBr(CO)(5)], abbreviated as MnCO) with a Ti-based metal-organic framework (Ti-MOF) to realize an intratumoral H2O2-triggered CO release and real-time CO release monitoring by fluorescence imaging. A high CO prodrug loading capacity (0.532g MnCO per gram Ti-MOF) is achieved due to the high surface area of Ti-MOF, and the intracellular H2O2-triggered CO release from the MnCO@Ti-MOF is realized to enable the nanocomplex selectively release CO in tumor cells and kill tumor cells rather than normal cells. Particularly significant is that the real-time fluorescence imaging monitoring of the CO release is realized based on an annihilation effect of the fluorescence after MnCO loading into Ti-MOF and an activation effect of the fluorescence after CO release from Ti-MOF. The quantitative relationship between the fluorescence intensity and the released CO amount is established in great favor of guiding on-demand CO administration. The results demonstrate the advantage of versatile MOFs for high efficient CO delivery and monitoring, which is critical for the improvement of the effectiveness of future therapeutic application.
更多
查看译文
关键词
carbon monoxide,controlled release,drug delivery,metal-organic frameworks,release monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要