谷歌浏览器插件
订阅小程序
在清言上使用

Improved Cell Transfection of Sirna by Ph-Responsive Nanomicelles Self-Assembled with Mpeg-B-phis-b-pei Copolymers

ACS applied materials & interfaces(2018)

引用 22|浏览10
暂无评分
摘要
Here, the novel pH-responsive nanomicelles self-assembled with amphipathic meo-poly(ethylene glycol)- b-poly(l-histidine)- b-polyethylenimine (mPEG- b-PHis- b-PEI, EHE) copolymers based on hydrophobic interaction of PHis with deprotonation of imidazoles were developed for siRNA transfection. The cationic nanomicelles could electrostatically compact siRNA into stable EHE/siRNA nanoplexes with a hydrodynamic diameter of ∼190 nm and present a low toxicity in normal physiological condition (pH ∼ 7.4). Different from pH-irresponsive ECE/siRNA nanoplexes based on mPEG- b-poly(ε-caprolactone)- b-PEI (ECE), the EHE/siRNA nanoplexes exhibited a higher cellular uptake along with an increased ζ-potential (from +18 to +32 mV) when the pH changed from 7.4 to 6.8 (extracellular acidic microenvironments). After cell internalization, the EHE/siRNA nanoplexes also exhibited an enhanced nanostructural disassembling and release of siRNA from lysosomal acidic microenvironments (pH ∼ 5.5). Furthermore, it was demonstrated that the EHE/siEGFR nanoplexes downregulated the expression levels of the corresponding mRNA and protein more efficiently than ECE/siEGFR in HeLa cells. The improved siRNA silencing effects of EHE/siEGFR nanoplexes resulted from the higher cellular uptake and enhanced endosomal/lysosomal escape, which is associated with the pH-responsive disassembly of nanostructure as well as the synergistic "proton sponge" effects of PHis and PEI in EHE copolymers. Therefore, the pH-responsive EHE nanomicelles would be promising and potential carriers for cell transfection of siRNA.
更多
查看译文
关键词
siRNA delivery,poly(l-histidine),pH-responsive triblock copolymer,disassembly,endosomal escape
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要