Antimalarial proteasome inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of resistance.

Proceedings of the National Academy of Sciences of the United States of America(2018)

引用 79|浏览20
暂无评分
摘要
We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) β5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The β5 inhibitors synergize with a β2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA β5 inhibitor surprisingly harbored a point mutation in the noncatalytic β6 subunit. The β6 mutant was resistant to the species-selective Pf20S β5 inhibitor but remained sensitive to the species-nonselective β5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S β5 inhibitor was accompanied by increased sensitivity to a Pf20S β2 inhibitor. Finally, the β5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S β5 and β2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要