谷歌浏览器插件
订阅小程序
在清言上使用

In Vitro Inhalation/ingestion Bioaccessibility, Health Risks, and Source Appointment of Airborne Particle-Bound Elements Trapped in Room Air Conditioner Filters

Environmental science and pollution research international(2018)

引用 12|浏览7
暂无评分
摘要
The airborne particle-bound elements (Ca, Fe, Al, Mg, K, Na, Zn, Mn, P, Pb, Cu, Sr, Ti, Ba, Cr, Ni, As, Sb, Cd, Co, and V) trapped in room air conditioners’ filters (filter dusts) during recirculating indoor air from different types of rooms were analyzed, and the objectives of this study were to assess the potential sources of those elements and their potential health risks via inhalation/ingestion exposure. Main crustal elements such as Ca, Fe, Al, Mg, and K with an average value of 60.6, 17.9, 11.3, 7.58, and 6.90 mg g−1, respectively, are the preponderant elements, and the mean values of main toxic elements were 2230, 344, 508, 85.7, 71.5, 36.0, 8.02, and 16.9 mg kg−1 for Zn, Cu, Pb, Cr, Ni, As, Cd, and Sb, respectively. The enrichment factors indicated the significant enrichment of Cd, Pb, Cr, Cu, Sb, and Zn in the filter dusts. Four potential sources with the contributions of 33.5, 29.1, 22.6, and 14.8%, respectively, were identified by absolute principal component scores-multiple linear regression analysis (APCS-MLR). Enrichment factor and APCS-MLR model reveal the outdoor input of toxic elements. In vitro inhalation and ingestion bioaccessibility of toxic elements showed elemental and in vitro procedure dependence. There are potential carcinogenic risks via ingestion exposure and no non-carcinogenic risks to both children and adults based on bioaccessible contents of toxic elements. This study reveals the potential health risks posed by the particle-bound elements.
更多
查看译文
关键词
Toxic elements,Enrichment level,Source identification,Bioaccessibility,Health risk,Indoor air quality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要