Diversity of piRNA expression patterns during the ontogeny of the German cockroach.

JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION(2018)

引用 8|浏览10
暂无评分
摘要
The Piwi-interacting RNA (piRNA) system is an evolutionarily conserved mechanism involved in the control of transposable elements and maintenance of genomic stability, especially in germ line cells and in early embryo stages. However, relevant particularities, both in mechanism and function, exist across species among metazoans and even within the insect class. As a member of the scarcely studied hemimetabolan group, Blattella germanica can be a suitable reference model to study insect evolution. We present the results of a stringent process of identification and study of expressed piRNAs for B. germanica across 11 developmental stages, ranging from unfertilized egg to nymphs and adult female. Our results confirm the dual origin of piRNA in this species, with a majority of them being generated from the primary pathway, and a smaller but highly expressed set of sequences participating in the secondary (ping-pong) reamplification pathway. An intriguing partial complementarity in expression is observed between the piRNA of the two biogenesis pathways, with those generated in the secondary pathway being quite restricted to early embryo stages. In addition, many piRNAs are exclusively expressed in late embryo and nymphal stages. These observations point at piRNA functions beyond the role of transposon control in early embryogenesis. Our work supports the view of a more complex scenario, with different sets of piRNAs acting in different times and having a range of functions wider than previously thought.
更多
查看译文
关键词
Blattella germanica,embryo development,hemimetabola,maternal-zygotic transition,small noncoding RNA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要