Structural Evolution of Co-Based Metal Organic Frameworks in Pyrolysis for Synthesis of Core-Shells on Nanosheets: Co@CoOx@Carbon-rGO Composites for Enhanced Hydrogen Generation Activity.

ACS applied materials & interfaces(2016)

引用 53|浏览3
暂无评分
摘要
In this article, Co-based metal organic frameworks (MOFs) with two shapes were used as pyrolysis precursor to synthesize multilayer core-shells composites loaded on reduced graphene oxide (rGO) sheets. The core-shell structures were obtained by the formation of cores from metal ions and carbon shells from carbonization of ligands. Controllable oxidation of Co cores to CoOx shells generated multilayer core-shell structures anchored onto the surface of rGO sheets. The N-doped composites were obtained by adding poly vinylpyrrolidone. The multilayer core-shells composites exhibited superior catalytic activity toward hydrogen generation compared to their single layer counterparts. By using the N-doped multilayer composites, high hydrogen generation specific rate of 5560 mL min(-1) gCo(-1) was achieved at room temperature. The rGO sheets in composites improved their structure stability. These catalysts exhibited high stability after used five cycling. This synergistic strategy proposes simple, efficient, and versatile blue-prints for the fabrication of rGO composites from MOFs-based precursors.
更多
查看译文
关键词
hydrogen generation,metal organic frameworks (MOFs),multilayer core−shells,pyrolysis,reduced graphene oxide (rGO)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要