Characterization of Calcium Phosphate Nanoparticles Based on a PEGylated Chelator for Gene Delivery.

ACS applied materials & interfaces(2017)

引用 39|浏览4
暂无评分
摘要
Calcium phosphate (CaP) nanoparticles are promising gene delivery carriers due to their bioresorbability, ease of preparation, high gene loading efficacy, and endosomal escape properties. However, the rapid aggregation of the particles needs to be addressed in order to have potential in vivo. In addition, there is a need to better understand the relationship between CaP nanoparticle properties and their interactions with cells. Here, a new synthesis route involving click chemistry was developed to prepare the PEGylated chelator PEG-inositol 1,3,4,5,6-pentakisphosphate (PEG-IP5) that can coat and stabilize CaP nanoparticles. Two methods (1 and 2) differing on the time of addition of the PEGylated chelator were employed to produce stabilized particles. Method 1 yielded amorphous aggregated spheres with a particle size of about 200 nm, whereas method 2 yielded 40 nm amorphous loose aggregates of clusters, which were quickly turned into needle bundle-like crystals of about 80 nm in a few hours. Nanoparticles prepared by method 1 were internalized with significantly higher efficiency in HepG2 cells than those prepared by method 2, and the uptake was dramatically influenced by the reaction time of Ca and PO and sedimentation of the particles. Interestingly, morphological transformations were observed for both types of particles after different storage times, but this barely influenced their in vitro cellular uptake. The transfection efficiency of the particles prepared by method 1 was significantly higher, and none of the formulations tested showed signs of cytotoxicity. This study provides a better understanding of the properties (e.g., size, morphology, and crystallinity) of PEGylated CaP nanoparticles and how these influence the particles' in vitro uptake and transfection efficiency.
更多
查看译文
关键词
PEGylated chelator,calcium phosphate nanoparticles,gene delivery,morphological transformations,particle properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要