One-Step Assembly of a Biomimetic Biopolymer Coating for Particle Surface Engineering.

ADVANCED MATERIALS(2018)

引用 98|浏览30
暂无评分
摘要
Advances in material design and applications are highly dependent on the development of particle surface engineering strategies. However, few universal methods can functionalize particles of different compositions, sizes, shapes, and structures. The amyloid-like lysozyme assembly-mediated surface functionalization of inorganic, polymeric or metal micro/nanoparticles in a unique amyloid-like phase-transition buffer containing lysozyme are described. The rapid formation of a robust nanoscale phase-transitioned lysozyme (PTL) coating on the particle surfaces presents strong interfacial binding to resist mechanical and chemical peeling under harsh conditions and versatile surface functional groups to support various sequential surface chemical derivatizations, such as radical living graft polymerization, the electroless deposition of metals, biomineralization, and the facile synthesis of Janus particles and metal/protein capsules. Being distinct from other methods, the preparation of this pure protein coating under biocompatible conditions (e.g., neutral pH and nontoxic reagents) provides a reliable opportunity to directly modify living cell surfaces without affecting their biological activity. The PTL coating arms yeasts with a functional shell to protect their adhered body against foreign enzymatic digestion. The PTL coating further supports the surface immobilization of living yeasts for heterogeneous microbial reactions and the sequential surface chemical derivatization of the cell surfaces, e.g., radical living graft polymerization.
更多
查看译文
关键词
amyloid,lysozyme phase transition,particle surface engineering,surface immobilization of living cells,surface modification of living cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要