The microenvironment following oxygen glucose deprivation/re-oxygenation-induced BSCB damage in vitro.

Brain research bulletin(2018)

引用 6|浏览4
暂无评分
摘要
OBJECTIVE:To characterize the microenvironment following blood-spinal cord barrier (BSCB) damage and to evaluate the role of BSCB disruption in secondary damage of spinal cord injury (SCI). METHODS:A model of BSCB damage was established by co-culture of primary microvascular endothelial cells and glial cells obtained from rat spinal cord tissue followed by oxygen glucose deprivation/re-oxygenation (OGD/R). Permeability was evaluated by measuring the transendothelial electrical resistance (TEER) and the leakage test of Fluorescein isothiocyanate-dextran (FITC-dextran). The expression of tight junction (TJ) proteins (occludin and zonula occludens-1 (ZO-1) were evaluated by Western blot and immunofluorescence microscopy. Proinflammatory factors (TNF-α, iNOS, COX-2 and IL-1β), leukocyte chemotactic factors (MIP-1α, MIP-1β) and leukocyte adhesion factors (ICAM-1, VCAM-1) were detected in the culture medium under different conditions by enzyme-linked immuno sorbent assay (ELISA). RESULTS:The model of BSCB damage induced by OGD/R was successfully constructed. The maximum BSCB permeability occurred 6-12 hours but not within the first 3 h after OGD/R-induced damage. Likewise, the most significant period of TJ protein loss was also detected 6-12 hours after induction. During the hyper-acute period (3 h) following OGD/R-induced damage of BSCB, leukocyte chemotactic factors and leukocyte adhesion factors were significantly increased in the BSCB model. Pro-inflammation factors (TNF-α, IL-1β, iNOS, COX-2), leukocyte chemotactic factors (MIP-1α, MIP-1β) and leukocyte adhesion factors (ICAM-1, VCAM-1) were also sharply produced during the acute period (3-6 hours) and maintained plateau levels 6-12 hours following OGD/R-induced damage, which overlapped with the period of BSCB permeability maximum. A negative linear correlation was observed between the abundance of proinflammatory factors and the expression of TJ proteins (ZO-1 and occludin) and transepithelial electrical resistance (TEER), and a positive linear correlation was found with transendothelial FITC-dextran. CONCLUSIONS:Secondary damage continues after primary BSCB damage induced by OGD/R, exhibiting close ties with inflammation injury.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要