Chrome Extension
WeChat Mini Program
Use on ChatGLM

Remarkably Efficient Blood–Brain Barrier Crossing Polyfluorene–Chitosan Nanoparticle Selectively Tweaks Amyloid Oligomer in Cerebrospinal Fluid and Aβ1–40

ACS omega(2018)

Cited 19|Views5
No score
Abstract
Amyloid oligomers have emerged as a key neurotoxin in Alzheimer's dementia. Amyloid aggregation inhibitors and modulators have therefore offered potential applications in therapeutics and diagnosis. However, crossing the blood-brain barrier (BBB) and finding the toxic aggregates among aggregates of different sizes and shapes remain a challenge. The ability of identifying early aggregates can provide a new approach to find inhibitors of the initial nucleation events correlating presenile dementia. In this study, we have prepared polyfluorene nanoparticles using chitosan as an additive, which enables it to cross BBB efficiently and employed as a highly efficient amyloid oligomer modulator. The polymer conjugate, polyfluorene-chitosan (PC), shows no toxicity in MTT assay and precludes self-aggregation of Aβ1-40 and human cerebrospinal fluid oligomers to final fibril formation. This modulation strategy is supported by thioflavin T assay, circular dichroism studies, atomic force microscope images, and Fourier transform infrared analysis. The polymer-protein interface exhibits the presence of co-aggregates and responded with a stable optical response. The simple synthesis to get desired sizes and shapes with necessary photophysical behavior, biocompatibility, and most prominently BBB permeability makes this polymer conjugate very unique and highly attractive for modulation of amyloid oligomers selectively as well as for developing next generation nanotheranostic materials toward presenile dementia.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined