Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI

ONCOGENE(2018)

引用 159|浏览9
暂无评分
摘要
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) is a major advance in treating NSCLC with EGFR-activating mutations. However, acquired resistance, due partially to secondary mutations limits their use. Here we report that NSCLC cells with acquired resistance to gefitinib or osimertinib (AZD9291) exhibit EMT features, with a decrease in E-cadherin, and increases in vimentin and stemness, without possessing any EGFR secondary mutations. Knockdown of E-cadherin in parental cells increased gefitinib resistance and stemness, while knockdown of vimentin in resistant cells resulted in opposite effects. Src activation and Hakai upregulation were found in gefitinib-resistant cells. Knockdown of Hakai elevated E-cadherin expression, attenuated stemness, and resensitized the cells to gefitinib. Clinical cancer specimens with acquired gefitinib resistance also showed a decrease in E-cadherin and an increase in Hakai expression. The dual HDAC and HMGR inhibitor JMF3086 inhibited the Src/Hakai and Hakai/E-cadherin interaction to reverse E-cadherin expression, and attenuated vimentin and stemness to restore gefitinib sensitivity. The EMT features of AZD9291-resistant H1975 cells were related to the upregulation of Zeb1. Both gefitinib and AZD9291 sensitivity was restored by JMF3086 through reversing EMT. Our study not only revealed a common mechanism of EMT in both gefitinib and AZD9291 resistance beyond EGFR mutations per se, but also provides a new strategy to overcome it.
更多
查看译文
关键词
Cancer stem cells,Cancer therapeutic resistance,Non-small-cell lung cancer,Medicine/Public Health,general,Internal Medicine,Cell Biology,Human Genetics,Oncology,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要